EXERCICE 1 3 pts

Soit la fonction rationnelle f définie sur $D = \mathbb{R} \setminus \{-2\}$ par $f(x) = ax + b - \frac{9}{x+2}$ où a et b sont des réels.

On note \mathscr{C} la courbe représentative de f dans un repère orthonormal $(O, \vec{\imath}, \vec{\jmath})$.

- 1. Sachant que la courbe \mathscr{C} admet une tangente horizontale au point A de coordonnées (1; -4), montrer que a = -1 et b = 0.
- **2.** Montrer que : $\forall x \in D$, $f'(x) = \frac{5 4x x^2}{(x+2)^2}$.
- **3.** En déduire le tableau de variation de f sur son ensemble de définition D.

EXERCICE 2 3 pts

On considère la suite (u_n) définie pour tout entier n par : $u_n = \frac{5n-2}{n+2}$

- **1.** Démontrer que, pour tout entier n, on a : $-1 \le u_n < 5$
- 2. Déterminer le sens de variation de cette suite.

EXERCICE 3 3 pts

Etudier la limite de chacune des suites suivantes, définies pour tout entier n:

$$u_n = \frac{2n + \sqrt{n}}{1 - 3\sqrt{n}}$$
 $v_n = (-1)^n - 2025n$ $w_n = \frac{3^n - 4^n}{e^n + 1}$

EXERCICE 4 4 pts

EXERCICE 4

On considère la suite (u_n) définie pour tout entier n par : $\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{1}{2}u_n + \frac{4}{3} \end{cases}$

- 1. Montrer par le calcul que (u_n) n'est pas géométrique.
- **2.** On introduit la suite (v_n) définie pour tout entier n par : $v_n = u_n 2$
 - **a.** Montrer que la suite v est géométrique de raison $q = \frac{1}{2}$.
 - **b.** En déduire l'expression de u_n en fonction de n.
 - **c.** Préciser la limite de u_n .
 - **d.** Calculer $\sum_{k=0}^{20} v_k$ et en déduire $\sum_{k=0}^{20} u_k$

EXERCICE 5

4 pts

On considère la suite numérique (u_n) définie sur $\mathbb N$ par :

$$u_0 = 2$$
 et pour tout entier naturel n , $u_{n+1} = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2}$.

On considère la suite numérique (v_n) définie pour tout entier naturel n, par : $v_n = u_n - 3$.

- 1. Montrer que, pour tout entier naturel n, $v_{n+1} = -\frac{1}{2}v_n^2$.
- **2.** Démontrer par récurrence que, pour tout entier naturel n, $-1 \leqslant v_n \leqslant 0$.
- **3. a.** Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = -v_n \left(\frac{1}{2}v_n + 1\right)$.
 - **b.** En déduire le sens de variation de la suite (v_n) .

EXERCICE 6 2 pts

On considère la suite (t_n) définie sur \mathbb{N} par : $t_0 = 0$ et, pour tout entier n, $t_{n+1} = t_n + \frac{1}{(n+1)(n+2)}$ Montrer que $t_n = \frac{n}{n+1}$ pour tout entier n.

EXERCICE 7 2 pts

- **1.** Donner la définition d'une suite divergente vers $+\infty$.
- **2.** Démontrer que toute suite croissante non majorée diverge vers $+\infty$.