1. pour montrer qu'une suite est minorée, majorée, bornée

(a)
$$\begin{cases} u_0 = 2 \\ u_{n+1} = 1 + \frac{1}{1 + u_n} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, 1 \leq u_n \leq 2$$

Soit $\mathcal{P}(n)$ la proposition : $1 \le u_n \le 2$

- *Initialisation*: on a bien $1 \le 2 \le 2$, soit $1 \le u_0 \le 2$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan* : on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a : $1 \le u_n \le 2$.

(b)
$$\begin{cases} x_0 = -1 \\ x_{n+1} = \sqrt{3x_n + 4} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}^*, \quad 0 \le x_n \le 4$$

Soit $\mathcal{P}(n)$ la proposition : $0 \le x_n \le 4$

- *Initialisation*: $x_1 = \sqrt{1} = 1$ et on a bien $0 \le 1 \le 4$, donc $\mathcal{P}(1)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n non nul donné.

Hyp. de récurrence :
$$0 \le x_n \le 4.$$

$$0 \le 3x_n \le 12$$

$$0'où \qquad 4 \le 3x_n + 4 \le 16$$

$$0'où \qquad \sqrt{4} \le \sqrt{3x_n + 4} \le \sqrt{16} \qquad \text{car } x \mapsto \sqrt{x} \text{ croissante sur } [0; +\infty[$$

$$0 \le x_{n+1} \le 4$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• Bilan: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n non nul, on a : $0 \le x_n \le 4$.

(c)
$$\begin{cases} t_0 = -8 \\ t_{n+1} = -\frac{1}{2}t_n^2 + 4 \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, t_n \leq -4$$

Soit $\mathcal{P}(n)$ la proposition : $t_n \le -4$

- *Initialisation*: on a bien $-8 \le -4$, soit $t_0 \le -4$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$t_n \le -4.$$

$$d'où \qquad t_n^2 \ge 16 \qquad \text{car } x \mapsto x^2 \text{ décroissante sur }] - \infty; 0[$$

$$d'où \qquad -\frac{1}{2}t_n^2 \le -8$$

$$d'où \qquad -\frac{1}{2}t_n^2 + 4 \le -4$$

$$d'où \qquad t_{n+1} \le -4$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan* : on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a : $t_n \le -4$.

(d)
$$\begin{cases} v_0 = 1 \\ v_{n+1} = v_n e^{-v_n} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, v_n \in [0;1]$$

Soit $\mathcal{P}(n)$ la proposition : $0 \le v_n \le 1$

- *Initialisation*: on a bien $0 \le 1 \le 1$, soit $0 \le v_0 \le 1$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$0 \le v_n \le 1$$
 $-1 \le -v_n \le 0$ $-1 \le e^{-v_n} \le e^0$ car exp croissante sur \mathbb{R} soit $\frac{1}{e} \le e^{-v_n} \le 1$ $e^{-v_n} \le v_n = v_n$ car v_n positif (par hyp. de récurrence)

d'où
$$0 \le \frac{1}{e} v_n \le v_n e^{-v_n} \le v_n \le 1$$

d'où $0 \le v_{n+1} \le 1$

On a ainsi montré que : $\mathscr{P}(n)$ vraie $\implies \mathscr{P}(n+1)$ vraie

• Bilan: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a: $0 \le v_n \le 1$.

(e)
$$\begin{cases} w_0 = 4 \\ w_{n+1} = \frac{3w_n + 2}{w_n + 2} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, \quad w_n \ge 2$$

• *Préliminaire*: étudions les variations de la fonction f définie sur $I =]-2; +\infty[$ par $f(x) = \frac{3x+2}{x+2}$ f est dérivable sur I en tant que fonction rationnelle définie sur I.

$$\forall x \in I, \ f'(x) = \dots = \frac{4}{(x+2)^2}$$

 $f'(x) > 0 \ \text{sur } I, \ \text{donc } f \ \text{est strict.} \ \text{croissante} \ \text{sur } I.$

Soit $\mathcal{P}(n)$ la proposition : $w_n \ge 2$

• *Initialisation*: on a bien $4 \ge 2$, soit $w_0 \ge 2$. Donc $\mathcal{P}(0)$ est vraie.

• $H\acute{e}r\acute{e}dit\acute{e}$: on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence : $w_n \ge 2$ d'où $f(w_n) \ge f(2)$ car f croissante sur I donc sur $[2; +\infty[$. d'où $w_{n+1} \ge \frac{8}{4}$ soit $w_{n+1} \ge 2$

On a ainsi montré que : $\mathscr{P}(n)$ vraie $\implies \mathscr{P}(n+1)$ vraie

• Bilan: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a : $w_n \ge 2$.

2. pour établir le sens de variation d'une suite

(a)
$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{4 + u_n^2} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que } (u_n) \text{ est strict. croissante.}$$

Soit $\mathcal{P}(n)$ la proposition : $u_{n+1} > u_n \ge 0$ (on va avoir besoin signe positif)

- *Initialisation*: on a $u_1 = 2$, et on a bien $2 \ge 1 \ge 0$, soit $u_1 > u_0 \ge 0$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$u_{n+1} > u_n \geqslant 0$$

$$u_{n+1}^2 > u_n^2 \geqslant 0 \quad \text{car } x \mapsto x^2 \text{ strict. croissante sur } [0; +\infty[$$

$$d'où \qquad 4 + u_{n+1}^2 > 4 + u_n^2 \geqslant 4$$

$$d'où \qquad \sqrt{4 + u_{n+1}^2} > \sqrt{4 + u_n^2} \geqslant 2 \quad \text{car } x \mapsto \sqrt{x} \text{ strict. croissante sur } [0; +\infty[$$

$$d'où \qquad u_{n+2} > u_{n+1} \geqslant 0$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• Bilan: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a: $u_{n+1} > u_n$, c'est à dire (u_n) croissante.

(b)
$$\begin{cases} v_0 = 0.9 \\ v_{n+1} = v_n - 0.1v_n^2 \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, \ 0 \leq v_{n+1} \leq v_n \leq 1$$

• *Préliminaire*: étudions les variations de la fonction f définie sur \mathbb{R} par f(x) = x - 0, $1x^2$ f est dérivable sur \mathbb{R} en tant que fonction polynôme. Et $\forall x \in \mathbb{R}$, f'(x) = 1 - 0, 2x $f'(x) > 0 \iff x < 5$, donc f est strict. **croissante** sur I = [0;1].

Soit $\mathcal{P}(n)$ la proposition : $0 \le v_{n+1} \le v_n \le 1$

- *Initialisation*: on a $v_1 = 0, 9 0, 1 \times 0, 9^2 = 0,819$ Donc on a bien $0 \le v_1 \le v_0 \le 1$, donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$0 \leq v_{n+1} \leq v_n \leq 1$$

$$d'où \qquad f(0) \leq f(v_{n+1}) \leq f(v_n) \leq f(1) \qquad \text{car } f \text{ croissante sur } I$$

$$d'où \qquad 0 \leq v_{n+2} \leq v_{n+1} \leq 0, 9$$

$$d'où \qquad 0 \leq v_{n+2} \leq v_{n+1} \leq 1$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan* : on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a : $0 \le v_{n+1} \le v_n \le 1$.

3. pour établir une inégalité

(a)
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1 \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, u_n \leq n + 3$$

Soit $\mathcal{P}(n)$ la proposition : $u_n \le n+3$

- *Initialisation*: on a bien $2 \le 0 + 3$, soit $u_0 \le 0 + 3$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$u_n \le n+3$$
.
 d'où $\frac{2}{3}u_n \le \frac{2}{3}(n+3)$
 d'où $\frac{2}{3}u_n + \frac{1}{3}n+1 \le \frac{2}{3}(n+3) + \frac{1}{3}n+1$
 d'où $u_{n+1} \le \frac{2}{3}n+2+\frac{1}{3}n+1$
 soit $u_{n+1} \le n+3$
 d'où $u_{n+1} \le n+4$ (car $n+3 \le n+4$)

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan* : on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a : $u_n \le n+3$.

(b)
$$\rightarrow$$
 Montrer que: $\forall n \ge 2$, $5^n \ge 4^n + 3^n$ $(n \in \mathbb{N})$

Soit $\mathcal{P}(n)$ la proposition : $5^n \ge 4^n + 3^n$

- *Initialisation*: on a bien $5^2 \ge 4^2 + 3^2$, donc $\mathcal{P}(2)$ est vraie.
- $H\acute{e}r\acute{e}dit\acute{e}$: on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$5^{n} \ge 4^{n} + 3^{n}$$
 d'où
$$5 \times 5^{n} \ge 5 \times (4^{n} + 3^{n})$$
 d'où
$$5^{n+1} \ge 5 \times 4^{n} + 5 \times 3^{n}$$
 d'où
$$5^{n+1} \ge 4^{n+1} + 3^{n+1} \quad (\operatorname{car} 5 \times 4^{n} \ge 4^{n+1} \text{ et } 5 \times 3^{n} \ge 3^{n+1})$$

On a ainsi montré que : $\mathscr{P}(n)$ vraie $\implies \mathscr{P}(n+1)$ vraie

• *Bilan*: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel $n \ge 2$, on a : $5^n \ge 4^n + 3^n$.

(c) \rightarrow Montrer que : $\forall x \in \mathbb{R}_+, \forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$ Soit un réel x positif.

Soit $\mathcal{P}(n)$ la proposition : $(1+x)^n \ge 1 + nx$

- *Initialisation*: on a $(1+x)^0 = 1$, donc on a bien $(1+x)^0 \le 1 + 0 \times x$. Donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$(1+x)^n \ge 1 + nx.$$

$$(1+x) \times (1+x)^n \ge (1+x)(1+nx) \quad (\operatorname{car} 1 + x \ge 0)$$
 soit
$$(1+x)^{n+1} \ge 1 + nx + x + nx^2$$
 soit
$$(1+x)^{n+1} \ge 1 + (n+1)x + nx^2$$
 d'où
$$(1+x)^{n+1} \ge 1 + (n+1)x \quad (\operatorname{car} nx^2 \ge 0$$
 d'où
$$(1+x)^{n+1} \ge 1 + (n+1)x$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan*: on peut donc conclure, d'après le principe de récurrence, que pour tout réel x positif, et pour tout entier naturel n, on a: $(1+x)^n \ge 1 + nx$.

(d) \rightarrow Montrer que: $\forall n \ge 6$, $6n+7 \le 2^n$ $(n \in \mathbb{N})$

Soit $\mathcal{P}(n)$ la proposition : $6n + 7 \le 2^n$

- *Initialisation*: on a $6 \times 6 + 7 = 43$, et $2^6 = 64$ Donc on a bien $6 \times 6 + 7 \le 2^6$, donc $\mathcal{P}(6)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier $n \ge 6$ donné.

On a ainsi montré que : $\mathscr{P}(n)$ vraie $\implies \mathscr{P}(n+1)$ vraie

• *Bilan*: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel $n \ge 6$, on a: $6n+7 \le 2^n$.

4. pour établir la formule explicite d'une suite

(a)
$$\begin{cases} u_0 = 5000 \\ u_{n+1} = 1,04u_n + 1000 \text{ pour tout } n \in \mathbb{N} \end{cases}$$

 \rightarrow Montrer que: $\forall n \in \mathbb{N}$, $u_n = 30000 \times 1,04^n - 25000$

Soit $\mathcal{P}(n)$ la proposition : $u_n = 30000 \times 1,04^n - 25000$

- *Initialisation*: on a bien $30000 \times 1,04^0 25000 = 30000 25000 = u_0$, donc $\mathcal{P}(0)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$u_n = 30000 \times 1,04^n - 25000.$$
 d'où
$$1,04u_n + 1000 = 1,04(30000 \times 1,04^n - 25000) + 1000$$
 d'où
$$u_{n+1} = 30000 \times 1,04^{n+1} - 1,04 \times 25000 + 1000$$
 soit
$$u_{n+1} = 30000 \times 1,04^{n+1} - 26000 + 1000$$
 soit
$$u_{n+1} = 30000 \times 1,04^{n+1} - 25000$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan*: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a: $u_n = 30000 \times 1,04^n - 25000$.

(b)
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{1+u_n} \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, u_n = \frac{2}{2n+1}$$

Soit $\mathcal{P}(n)$ la proposition : $u_n = \frac{2}{2n+1}$

- *Initialisation*: on a bien $\frac{2}{2 \times 0 + 1} = 2 = u_0$, donc $\mathcal{P}(0)$ est vraie.
- $H\acute{e}r\acute{e}dit\acute{e}$: on suppose que $\mathcal{P}(n)$ est vraie pour un entier n donné.

Hyp. de récurrence :
$$u_n = \frac{2}{2n+1}.$$

$$u_{n+1} = \frac{u_n}{1+u_n} = \frac{\frac{2}{2n+1}}{1+\frac{2}{2n+1}} = \frac{\frac{2}{2n+1}}{\frac{2n+1+2}{2n+1}} = \frac{2}{2n+3} = \frac{2}{2(n+1)+1}$$

On a ainsi montré que : $\mathcal{P}(n)$ vraie $\implies \mathcal{P}(n+1)$ vraie

• *Bilan*: on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n, on a: $u_n = \frac{2}{2n+1}$.

(c)
$$\begin{cases} u_1 = 0 \\ u_{n+1} = \sqrt{u_n^2 + 1} \text{ pour tout } n \in \mathbb{N}^* \end{cases}$$

- \rightarrow Conjecturer la formule explicite de u_n , puis la justifier.
- *Conjecture*: il semble que, pour tout n non nul, on ait: $u_n = \sqrt{n-1}$

Soit $\mathcal{P}(n)$ la proposition : $u_n = \sqrt{n-1}$

- *Initialisation*: on a bien $\sqrt{1-1} = 0 = u_1$, donc $\mathcal{P}(1)$ est vraie.
- *Hérédité* : on suppose que $\mathcal{P}(n)$ est vraie pour un entier n non nul donné.

Hyp. de récurrence : $u_n = \sqrt{\frac{u_n}{u_n}}$

$$u_n = \sqrt{n-1}.$$
 d'où
$$u_{n+1} = \sqrt{u_n^2 + 1} = \sqrt{\sqrt{n-1}^2 + 1} = \sqrt{n-1+1} = \sqrt{n}$$

On a ainsi montré que : $\mathscr{P}(n)$ vraie $\implies \mathscr{P}(n+1)$ vraie

- *Bilan* : on peut donc conclure, d'après le principe de récurrence, que pour tout entier naturel n non nul, on a : $u_n = \sqrt{n-1}$.
- (d) Approfondissement : un exemple de récurrence d'ordre 2 :

 $\begin{cases} u_0 &= 1 \\ u_1 &= 3 \\ u_{n+2} &= 4u_{n+1} - 3u_n \text{ pour tout } n \in \mathbb{N} \end{cases} \rightarrow \text{Montrer que}: \forall n \in \mathbb{N}, u_n = 3^n$

indication: pour l'hérédité montrer que: P(n) vraie et P(n+1) vraie $\Rightarrow P(n+2)$ vraie

5. pour justifier l'expression de la **dérivée** *n*-ième d'une fonction

Soit f définie sur $D = \mathbb{R} \setminus \{1\}$ par $f(x) = \frac{1}{1-x}$.

On admet que f est infiniment dérivable sur D. \rightarrow Montrer que : $\forall n \in \mathbb{N}^*, \ f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$ notations : $f^{(n)}$ désigne la dérivée n-ième de la fonction f.

 $n! = \prod_{k=1}^{k=n} k$ est le produit des entiers de 1 à n. (n! se lit "factorielle n")

(a)	Montrer que	$4^{n}-1$	est divisible par 3, pour tout entier n .

- (b) Montrer que $n^3 n$ est divisible par 3, pour tout entier n.
- (c) Montrer que $7 \times 3^{5n} + 4$ est divisible par 11, pour tout entier n.