SAVOIR-FAIRE SUR LES SUITES

- → Surligné = savoir-faire à maîtriser pour DS n° 1
- 1.1 Savoir obtenir à la calculatrice le tableau des termes consécutifs d'une suite définie par u_n = f (n)
 → calculatrice en mode fonction, entrer f(x), tableau valeurs en partant de 0 avec un pas de 1
 - 1.2 Savoir obtenir à la calculatrice le tableau des termes consécutifs d'une suite définie par récurrence $u_{n+1} = f(u_n)$.
 - → calculatrice en mode suite
- 2. Savoir représenter sur un axe, à l'aide de la courbe d'une fonction et de la droite d'équation y = x, les termes d'une suite définies par récurrence
 - → voir ex 2 fiche 1 ou ex 2 DM 1
- 3. Savoir démontrer une égalité par récurrence
 - → voir ex 6 fiche 3 ou ...
- 4. Savoir démontrer une inégalité ou un encadrement par récurrence
 - → voir ex 9 fiche 3 ou question 1. b. fiche 4 ou...
- 5. 5.1 Savoir démontrer qu'une suite est arithmétique
 - → voir ex 3 fiche 1 ou ex 3 fiche 2 ou ...
 - 5.2 Savoir calculer une somme de termes consécutifs d'une suite arithmétique

savoir en particulier que :
$$\sum_{k=1}^{k=n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

- \rightarrow voir ex 2 fiche 2 ou ...
- 6. 6.1 Savoir démontrer qu'une suite est géométrique
 - → voir ex 4 fiche 2 ou question 3 fiche 4 ou ex 2 fiche 3 ou ...
 - 6.2 Savoir calculer une somme de termes consécutifs d'une suite géométrique

savoir en particulier que :
$$\sum_{k=0}^{k=n} q^k = 1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

- → voir question 4/ fiche 4 ou ...
- 7. Savoir démontrer qu'une suite est monotone (ou monotone à partir d'un certain rang)
 - 7.1 Par une comparaison directe des termes successifs
 - 7.2 Par l'étude du sens de variation de la fonction f lorsque la suite est définie de façon explicite par $u_n = f(n)$
 - \rightarrow voir ex 5 fiche 3 ou 20 fiche 5...
 - 7.3 Par l'étude du signe de la différence entre deux termes successifs $u_{n+1} u_n$
 - \rightarrow voir ex 4 et 5 fiche 3 ou ...
 - 7.4 Par la comparaison du quotient $\frac{u_{n+1}}{u_n}$ à 1 si $u_n > 0$ pour tout n
 - \rightarrow voir ex 21 et 23 fiche 5 ou ...
 - 7.5 Par un raisonnement par récurrence
 - \rightarrow voir ex 9 fi. 3 ou ...
- 8 8.1 Savoir démontrer qu'une suite n'est pas monotone
 - 8.2 Savoir donner un exemple de suite non monotone
 - \rightarrow penser à $u_n = (-2)^n$

9	<mark>Savoi</mark> 9.1	démontrer qu'une suite est majorée par M et/ou minorée par m Par la résolution d'une inéquation ($u_n \le M$ et/ou $u_n \ge m$) \rightarrow voir ex 4 et 5 fiche 3 ou
	9.2	Par l'étude des variations d'une fonction lorsque la suite est définie de façon explicite $u_n = f(n)$
	9.3	Par récurrence → voir ex 9 fiche 3 ou
10	Savoi	r démontrer qu'une suite est périodique
	10.1	Par l'étude de la périodicité d'une fonction
	10.2	Par récurrence
11	Savoi	r démontrer qu'une suite est convergente ou divergente
	11.1	Par l'utilisation des opérations sur les limites (directement, ou après factorisation, utilisation de l'expression conjuguée,)
		→ voir ex 133 fiche 6 ou a/ b/ e/ f/ fiche 8 ou
	11.2	Par l'utilisation de théorèmes de comparaison
		→ voir ex 148 et 149 fiche 6 ou
	11.3	Par l'utilisation du théorème de la convergence monotone (suite croiss. majo. ou suite déc. min.)
	11.4	Par l'utilisation du théorème de la divergence des suites monotones non bornées
	11.5	Par l'utilisation de la hiérarchie des fonctions de référence (croissance comparée)
12.	Savoi	r donner la limite d'une suite géométrique suivant les valeurs de la raison q. → voir c/ d/ e/ fiche 8 ou
13.	Savoi	r démontrer qu'une suite tend vers l'infini à partir de la définition : → voir a/ et b/ fiche 6 ou
13.	Un al	gorithme étant donné :
	13.1	Savoir dresser un tableau donnant l'état des variables à chaque étape de l'exécution de l'algorithme → voir ex ou
	13.2	Savoir utiliser le cas échéant une variable tampon → voir ex ou
	13.3	Savoir écrire un algorithme donnant le rang à partir duquel $u_n \ge$ (seuil donné) \rightarrow voir ex ou
	13.3	Savoir écrire un algorithme donnant le rang à partir duquel $ u_n-l <$ (seuil donné) \rightarrow voir ex ou